
New braid group representations of the D2 and D3 types and their Baxterization

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 4751

(http://iopscience.iop.org/0305-4470/23/21/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 4751-4764. Printed in the UK 

New braid group representations of the D, and D, types and 
their Baxterization 

M Couture?, M L Getell, H C Leet§ and N C Schmeingtl 
t Theoretical Physics Branch, Chalk River Nuclear Laboratories, Atomic Energy of 
Canada Limited, Research Company Chalk River, Ontario, Canada 
$ Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People’s 
Republic of China 
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Abstract. New braid group (B,) representations of the D2 and D, types are obtained by 
solving the defining relations of B,, directly. We discuss a procedure (Baxterization) which 
allows us to construct their corresponding quantum R matrices. 

1. Introduction 

The quantum Yang-Baxter equation (QYBE) 

R12(X)Rl3(XY)R23(Y) = &3(Y)R13(XY)RI2(X) (1.1) 

plays a central role in the theory of solvable models in statistical mechanics and 
quantum field theory [l-51. If V is a complex vector space and R ( x )  E End( VO V) 
then R , ( x )  E End( VO VO V) is a matrix that acts as R ( x )  on the ith and j th spaces 
and as the identity on the remaining space; R ( x )  is referred to as the quantum R 
matrix and x E C is the multiplicative spectral parameter. The QYBE takes various forms. 
In two-dimensional solvable statistical models the formulation ( 1.1) is mostly associated 
with vertex models, while the star-triangle form appears in the interaction-round-a-face 
models. In (1 + 1)-dimensional field theory, the QYBE takes the form of the factorization 
equations. Another form of the QYBE which proves useful is 

( d ( x )  0 I ) ( I 0 d ( x y  ) )  ( d ( y ) O I )  = ( IO  d ( y  1) ( d ( x y  ) 0 I ) ( I  O d ( x )  (1.2) 

with 

d(x) = P R ( x )  (1.3) 

where P E  End( VO V) denotes the transposition U 0 U’+ U’@ U and I E End( V )  is the 
identity map. 
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A large number of solutions have been obtained by solving the factorization 
equations directly [3,6-81. Kulish er a1 initiated a programme [9] in which one obtains 
quantum R matrices whose classical limit are known solutions ( r  matrices) of the 
classical Yang-Baxter equation; quasi-classical solutions of the rational and 
trigonometric type have been obtained [lo-121. Artin's braid group B, provides an 
interesting connection between solvable models in two-dimensional statistical 
mechanics and field theory and the theory of knots. The matrix S =  k(0) which is in 
fact a representation of Artin's braid group B2 and from which representations of B, 
(any n )  may be constructed, has been extracted from solvable statistical models at 
criticality and used to construct link polynomials [3, 131. 

In this paper, we approach the problem of finding new solutions of the QYBE by 
first solving for new braid group representations; this is done by solving the defining 
relations of B, directly. We then proceed to construct their corresponding quantum R 
matrices; this procedure is known as Baxterization [ 141. 

Our paper is organized as follows. In section 2 we briefly introduce Artin's braid 
group and some known representations. In sections 3 and 4 9ew braid group representa- 
tions of the D, and D, types are presented. In section 5 we describe the method by 
which we transform a given matrix S into its corresponding quantum R matrix. In 
sections 6 and 7 we use this procedure to construct the quantum R matrices correspond- 
ing to the solutions of the D2 and D3 types given in sections 3 and 4. We conclude 
with a few remarks. 

2. Artin's braid group and some known representations 

B, [ 15,161 is generated by a set of ( n  - 1) generators g ,  , g , ,  . . . , g , - ,  and their inverse 
subject to the following necessary and sufficient defining relations: 

gig, = g,g, ii-jla 2 (2 . la )  

grgl-lg! = gl+lg,g,Tl. (2.16) 

Let V be an n-dimensional vector space and S E  End( VO V) be an N 2  x N 2  matrix 
that has an inverse. The following mapping is a representation of B,: 

p : B, + End( V@") p ( g , )  = r,O . . .  Oz,_,OsOr,+,O.. .Or, (2.2) 

where the subscript i means the ith vector space in p" and S acts in the ith and 
( i  + 1)th vector spaces. The form of (2.2) ensures the satisfaction of (2.1 a ) ;  no restriction 
need be imposed on S. The satisfaction of (2 . lb)  requires that S be a solution of 

(sor)(ros)(sOz) = (zos)(sor)(ros). (2.3) 

Our reference point throughout this paper are the solutions of (2.3) which can be 
extracted from Bazhanov and Jimbo's quasi-classical quantum R matrices [ 11, 121. 
We shall refer to them as the standard solutions. Reshetikhin [17] has shown how 
these standard solutions can be generated from fundamental irreducible representations 
of the quantized universal enveloping algebras of simple Lie algebras. The solutions 
are associated with the direct products 

I 

A O A =  1 
, = I  
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where A is the fundamental irreducible representation of some Lie algebra and 1 is 
the number of irreducible representations in the decomposition. Their spectral 
decomposition and characteristic polynomial A (  A ) follow the decomposition rule ( 2 . 4 ) .  

/ 

S =  1 A i P i  
, = I  

( 2 . 5 a )  

A( A ) = de t ( A I - S ) = ( A - A )'I . . . ( A - A/)'( ( 2 . 5 b )  

where the A,  are the distinct eigenvalues, the P, the projectors and f; the dimension 
of d i .  In addition 

S ( k = l ) = P  ( 2 . 5 ~ )  

where k is the deformation parameter. An example of such a standard solution is that 
associated with the fundamental irreducible representation of sl( 2,  @ )  

Sl(k)  =block diag(y,, Y 2 ,  Y-1) 

A ( A ;  k )  = ( A  - k)3(A + k-I) 

m(A;  k) = ( A  - k)(A + k-I) 

where m ( A ;  k) is the minimal polynomial. SI is connected to the six-vertex model and 
the Jones polynomial [7, 181. S, is the first of an infinite family of solutions correspond- 
ing to every irreducible representation of sI(2, @). The question we raised some time 
ago and which led to an infinite family of new solutions [19] was the following: is S, 
the only distinct solution with the following block structure? 

The answer is no; there are in fact only two distinct solutions, the second one being 

S,( k )  = block diag( 7, , T,, 

A ( A ;  k ) = ( A  - k),(A + k-')* 

m(A;  k) = ( A  - k)(A + k-I) 

S,( k = 1 ) = P*  # P. 

S, is connected to the free fermion model [ 7 ]  a 

( 2 . 7 )  

d to the Alexander-Conway l i  k 
polynomial [20-231. Nore that although it has the same minimal polynomial, it does 
not follow the decomposition rule of SI and is the k-analogue of a graded permutation 
operator P*. We shall refer to such solutions as non-standard solutions. More recently 
non-standard solutions related to B,  and C,  [ 2 4 ]  as well as to A,, [ 2 3 , 2 5 , 2 6 ]  were 
reported. In the next two sections, we examine new non-standard solutions of the D2 
and D3 types. 
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3. New braid group representations of the D2 type 

3.1. S , ( k ) x S j ( q )  

Our starting point is the solution of (2.3) extracted from Bazhanov and Jimbo's D:" 
quantum R matrix which we shall refer to as the standard D2 solution. Its block 
structure is 

S=block diag(r,, 7 2 , 7 3 , 7 4 , 7 - 3 , 7 - 2 ,  7-,) 

o o o z 7  

r4 = [;, ;; i, ;j* 
Solutions of (2.3) which have the block structure described in (3.1) will be referred to 
as solutions of the D, type. The following direct products are also solutions of this type: 

Si( k )  x Sj(  q )  = block diag( T ' ,  T ~ ,  r3, T ~ ,  r-3, r-2, r-') i , j = 1 , 2  

(3.2a) 

k i = l  j = l  .={ -k-'  j = 2 P = { q  -q - I  j = 2 .  

Their characteristic and minimal polynomials are 

A(A; k, 4) = ( A  - kq)'(A - k - ' q - ' ) ( A  + / c - ' ) ~ ( A  + l ~ - ' q ) ~  

A ( A ;  k, q )  = ( A  - k q ) 6 ( A  - k- 'q - ' )2 (A  + kq-')6(A + k - ' q ) ,  

A(A;  k, 4) = ( A  - kq)6(A - k - ' q - ' ) 2 ( A  + / C - ' ) 2 ( A  + k - ' q ) 6  

A ( A ;  k, 4) = ( A  - kq)4(A - k-'q-')4(A + kq-')4(A + k - 1 q ) 4  

m ( A ;  k, q )  = ( A  - k q ) ( A  - k - ' q - ' ) ( A  + k q - ' ) ( A  + k - ' q )  

i , j = l  

i = 1, j = 2 

i = 2 , j = 1  

i = 2, j = 2 

i, j = 1 ,  2. 

(3 .2b)  
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= yl,2,-1 or +,,,,-, as given in (2 .6)  or Since S, has the form ( p , ,  p 2 ,  p - ’ )  where 
( 2 . 7 ) ,  it is easy to establish the identification 

71 = P l ( k )  x P 2 ( 4 )  

T 3  -block diag( 7: = P - ~ (  k )  x p l (  q ) ,  

7-1 = p - i ( k ) x p - i ( q )  

7 4  = P A k )  x P2(4 )  

7 2 =  p , ( k ) x p , ( q )  

75 = p , ( k )  x P - 1 ( 4 ) )  

7 - 2 =  P l ( k )  x P 2 ( S )  

 block d i a g ( ~ ’ , ~ p p , ( k ) x p - , ( q ) ,  ~ L ~ = p - ~ ( k ) ~ p ~ ( q ) )  

there the tilde - means to within rearrangement of rows and columns. Thus the canonical 
form of D,-type solutions that are direct products of the S, ( i  = 1 , 2 )  is block 
diag(T,, T ; ,  T ~ ,  T ; ,  74, T - ~ ,  7L2,  T - , ,  ~ 1 ~ ) .  The standard D 2  solution extracted from 
Jimbo’s formula ( 3 . 6 )  in [ 121 corresponds to the case k = q and i , j  = 1 ;  it is equal to 

The characteristic polynomials in ( 3 . 2 6 )  indicate that for k = q only S , ( k )  x S , ( k )  
k 2 ( s i ( k ) @ S i ( k ) ) .  

follow the classical decomposition rule 

( 4 ) x ( 4 ) = ( 9 ) + ( 6 ) + ( 1 ) .  ( 3 . 3 )  

The remaining three solutions do not follow this decomposition rule and are thus of 
the non-standard type. We now turn to a two-parameter solution of the D2 type which 
is not the result of direct products of SI and S 2 .  

3.2. s’(k, 4): a new two-parameter solution 

This solution was found by solving ( 2 . 3 )  directly. The method used is an extension of 
the one described in [ 2 7 ]  and has already led to solutions associated with non- 
fundamental irreducible representations [ 191; a solution is obtained by solving a 
minimal set of equations and then verifying, using a symbolic manipulation computer 
code [ 2 8 ] ,  that the full set of equations ( 2 . 3 )  is satisfied. This new solution which we 
denote g( k, q )  is as follows: 

S ( k ,  q)=block diag(i , ,  i2,  i3, i4, i-3, F - 2 ,  
* 

0 0  

kq 0 k ( 1 - q 2 )  

i, = k i2=(’ 1 ) i3=( 0 - k - ’  
1 k - k - ’  

0 0 
0 - k  

- k  0 
[ ( 1 - k 2 ) ( 1 - q 2 ) ] ’ / 2  [ ( 1 - k 2 ) ( 1 - q 2 ) ] 1 / 2  ( 2 k  - k-’  - q 2 k )  

S ’ ( l , l ) #  P 

A ( A ;  k, 4) = ( A  - k)’(A + k - ’ ) 4 ( A  + k q 2 ) 4  

m ( A ;  k, q )  = ( A  - k ) ( A  + k - ’ ) ( A  + k q 2 ) .  

( 3 . 4 )  
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It is easily shown that s"(k, q )  is not a particular case of Si x Si and that in fact it 
cannot be obtained from any direct product L ,  x L2 where both Ll and L2 have two 
distinct eigenvalues. The characteristic polynomial indicates that s"( k, q )  is of the 
non-standard type (it does not follow the decomposition rule (3.3) of the standard D2 
solution). Note that for q = i the minimal polynomial of s'( k, i )  is 

m ( A ;  k, q = i) = ( A  - k)'(A + k - ' )  

which indicates that s"( k, i )  is non-diagonalizable. Non-diagonalizable one-parameter 
solutions can also be obtained from the direct products S i ( k )  x S j ( q ) .  We now turn to 
new solutions of the D3 type. 

4. New braid group representations of the D3 type 

Our reference point is the standard solution of (2.3) extracted from Bazhanov and 
Jimbo's Dill quantum R matrix. By solving (2.3) directly we found that in addition 
to the standard solution there are only three other solutions of the D, type. The standard 
solution is follows: 

0 0 0  0 0 k-' / 

0 0 0 k-' - k-' w 
0 k-' k - ' w  k - 2  w 

0 k - ' w  k - 2  w 
k-' w 2  - k - 3 ~  

, ( k - '  + k-')  w2 

with w = k - k-I ,  5 = k and x = k; all submatrices r r+,  are symmetric. The characteristic 
and minimal polynomials of S are 

A ( A ;  k )  = ( A  - k)'O(A + k - ' ) ' ' ( A  - k - 5 )  

m ( A ;  k )  = ( A  - k ) ( A  + k - ' ) ( A  - k - 5 ) .  
(4.lb) 

Note that S decomposes according to the classical decomposition rule (6) x (6) = 
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(20 )  + ( 1 5 )  + ( 1 ) .  The other three solutions are non-standard solutions and divide in 
two equivalence classes; we give a representative of each class. The first non-standard 
solution is 

s" = block diag( G I ,  7j2, 7 j 3 ,  e4, 7 j 5 ,  6 6 ,  7k5, k4, 7j-3, T - ~ ,  T - ' )  

7j1 = 7jW1 = k 7j3= 7 j - 3 =  r3(6= - k - ' )  

- . .  

7 j 2  = 6 - 2  = T 2  

T 4  = T - 4  = T 4  

0 0 0 - k  iw 
0 k-' iw w 

0 iw w 
2w -iw 

( 4 . 2 ~ )  

where w = k - k-I and 7jo is symmetric. The characteristic and minimal polynomials 
of S are 

A ( A ;  k )  = ( A  - k)"(A + k-')''(A - k-I)  

m ( A ;  k )  = ( A  - k ) ( A  + k - ' ) (A  - k - I ) .  

The second non-standard solutions are as follows: 

(4.2b) 

(4.3a) 

with w = k - k-' and r$ is symmetric. The characteristic and minimal polynomial of 
S* are 

A(A; k )  = ( A  - k)I9(A + k- ' ) I6(A + k - 3 )  

m ( A ;  k ) = ( A - k ) ( A + k - ! ) ( A + k - 3 ) .  
(4.36) 

Note that all non-standard solutions do not follow the classical decomposition rule. 
We now turn to the problem of transforming these solutions into solutions of (1.2). 

5. Baxterization 

The purpose of this section is mainly to present certain Baxterization formulae which 
were introduced in [ 29 ] .  Jimbo has shown [12] that all quasiclassical quantum R 
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matrices derived in [ l l ,  121 have the following form: 
I 

d ( x ) =  1 6 , ( x ) P ,  
, = I  

where 1 is the number of distinct eigenvalues and 

( 5 . 1 ~ )  

&(x)  = a, + 6 , x +  c,x2+. . . + x i - ' .  (5.16) 

where a,, 6,, , . , are constants. In addition, these solutions satisfy the unitarity and 
initial conditions. Using the quantized universal enveloping algebras associated with 
these solutions, Jimbo reduces the Q Y B E  to a set of linear equations for d ( x )  which 
he then uses to determine the eigenvalues 6,(x) 

In the light of those results the strategy for constructing a quantum R matrix of 
the trigonomeric type given a solution S of (2.3) is as follows. Starting with a braid 
group representation whose spectral decomposition is 

S=AlP,+AzP2+.. . + A l p ,  

we seek a quantum R matrix of the form (5.1). The coefficients are determined by 
imposing the following constraints: 

d ( x  = 0 )  = s 
d ( x  = 1) = uz (initial condition) (5.2) 
d ( x ) R ( x - ' )  = v ( x ) I  (unitarity condition). 

Before proceeding any further, a point should be made clear. We have examined many 
cases other than the ones discussed in this paper and our experience with this procedure 
clearly demonstrates that the constraints (5.2) are not sufficient to insure that the matrix 
d ( x ) ,  obtained through such a construction, is a solution of the QYBE (1.3). Based on 
the many cases examined, we suspect that the formulae given in (5.6) and (5.8) to 
Baxterize a given braid group representation S with three and four distinct eigenvalues 
are quite general; however, at this present stage of development we still must verify 
that the matrix d ( x )  obtained is indeed a solution of the QYBE. This test is most easily 
done using a symbolic manipulation computer code such as SCHOONSHIP [28]. 

We begin with the case of two distinct eigenvalues. Substituting (5.1) into (5.2) 
we get 

a, = A ,  a, = A 2  

(5.3) 

a ,b ,  = a2b2 a ,  + b ,  = a2+  b 2 .  

Solving (5.3) we get the following Baxterian formula: 

d ( x )  = ( A  , + A , X ) P ,  + ( A ,  + A , x p 2  = s + A , A , x s - ' .  (5.4) 
By substituting (5.4) into (1.2) it is easily verified that this formula is valid for any S. 

Let us now consider the case 1 = 3. Substituting (5.1) into (5.2) we get 

a ,  = A I  az = A 2  a3 = A 3  

a ,  + b ,  + c,  = a2+ b,+ c2 = a j+  b,+ c j  

a l c l  = a2cz = a3c3 

a:+ b:+ c: = a:+ 6 5 1  ci = a:+ 6:+ c:. 

(5.5) 
b l (  a ,  + c , )  = b2(az + c 2 )  = b,( a3 + c3) 
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There are many solutions to ( 5 . 5 ) ;  the ones of interest here are those leading to the 
following formula: 

+ [ A + ( + A 2 )  x + A , x2] P3 

= A , A 3 ~ ( ~ - 1 ) S - ' + A 3  (5.6) 

and to the formulae obtained through all possible permutations of the three indices 
in (5.6); out of the six possibilities only three are distinct. 

a ,  = A ,  a2 = A 2  a3 = A 3  a4= A 4  

a,  + b,  + c1 + d ,  = a, + b2+ c2+ d, = a3 + b3+ c3+ d3 = a,+ b4+ c4+ d4 

a: + b: + c:+ d :  = a:+ b:+ c: + d:  = a: + b: + c: + d:  = a:+ bi+ c:+ d: 

a,b,+ b,c,+c,d,  = a2b2+ b2c2+ c2d2= a3b3+ b3c3+ c3d3 = a4b4+ b4c4+c4d4 

a,c ,  + b,d, = a2c2+ b2d2 = a3c3+ b3d3 = a4c4+ b4d4 

a ,d ,  = a2d2 = a3d3 = a4d4. 

There are several solutions to (5.7); the one of interest leads to the following formula: 

For the case 1 = 4, conditions (3.2) lead to the following set of equations: 

(5.7) 

d( x)  = U2( x)S2 + U ,  (x)S + CO( x)Z + U - ,  (x)S-' ( 5 . 8 )  

with 

u ~ ( x ) ~ ( A ~ A ~ ) ~ ~ ( A ~ - A ~ ) ~ ~ ( A ~ A ~ - ~ ~ A ~ ) x ( x -  1) 

u , ( x )  = 1 - x - (h2A3)-'( A 4  - A,) - ' [  ( A 2 +  A3)(  A 2 A 4  - A l A 3 )  i- A2AZ, - A21A3]x(x - 1) 

c ~ ( x )  = ( A 2 A 3 ) - ' ( h 4  - A l ) - ' { [ ( A l A 3 +  A l A 4 +  A 2 A 3 +  A Z A d ) ( A 2 A 4  - A l A 3 )  + A,A,(A;- A21) 

+ AiA4(A3A4-A,A2)]x2+ [%(Ai + A z ) - A i A Z z ( A 3 +  A4)Ix) 

More detailed discussion of this Baxterization procedure is given [29]. We now turn 
to the problem of Baxterizing the solutions described in sections 3 and 4. 

6. Baxterization of the D2 and D3 type solutions 

6.1. The six-vertex and free-fermion models and their direct products: Baxterizing using 
the two distinct eigenvalues formula 

We first Baxterize S ,  and S2 given in equations (2.6) and (2.7). Using formula (5.4) 
with A ,  = k and A 2 =  k-'  we get: 

d, (x ;  k )  =block d iag( r , ,  r2, r-,) 
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F,= k - k - ' x  f , = ( x ( k - k - ' )  1 - x  ) f - , = - k - ' + k x .  
1 - X  k - k-' 

It is easily shown that the solvable statistical models associated with d , ( x ;  k )  and 
A 2 ( x ;  k )  are the 6V(Z) (six-vertex) and 6V(ZZ) (free-fermion models described by 
Sogo et a1 171. 

d , ( x ;  k )  x d j ( x ;  q )  =block diag( T3, T,, TI, To, T-l, T-2, T-3) 

The following direct products are also solutions of (1.2): 

i, j = 1,2 

(6.3) 

T4 = 

with 

tl  E k - k-'X 

f 4 =  k - k - '  

V I  = q - q - ' x  

U4 = q - q-' 

t 2 =  x ( k  - k - I )  t 3 = l - x  

u 2 ' x ( q - q - ' )  U3'1-x 

t5  = a - a - ' x  

v5 = p - p - ' x  

and where a and /3 are as defined in ( 3 . 2 ~ ) .  Note that P [ k 2 d , ( x ;  k ) x d , ( x ;  k ) ]  is 
equal to Jimbo's D;') quantum R matrix [12].  

6.2. Quan:um R matrices associated with S,(kj x S,(q) and S(k, 9): Baxterizing using the 
three and four distinct eigenvalues formulae 

The direct products S , ( k )  x S , ( q )  provide a good testing ground for the Baxterization 
formulae discussed in section 5. We first consider the case k = q whose three distinct 
eigenvalues are k 2 ,  -1 and k-2.  With the choice A ,  = k2 ,  A 2  = -1 and A 2  = k-' formula 
(5.6) yields d , ( x ;  k )  x d,(x; k) given in (6.3) illustrating the fact that we can Baxterize 
SI and S2 first and then take the direct product or take the direct product first and 
then Baxterize. It is interesting to note that there are two distinct ways of Baxterizing 
S , ( k )  x S,(ic), each one corresponding to a different ordering of the eigenvalues. While 
the orderipg A I  = k', A * =  -1  and A 3  = k-2 gives R , ( x ,  k) x R , ( x ;  k) the use of (5.6) 
with the ordering A ,  = -1, A, = k 2  and A3 = k-* gives a different quantum R matrix 
which we denote d * ( x ;  k ) ;  - k 4 P d * ( x ;  k )  is equal to the Ai2' quantum R matrix given 
by Jimbo in [12].  For all the other direct products, out of the three tiistinct orderings 
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1L I 

of the eigenvalues only one leads to a solution of (1.2). Finally we can Baxterize 
S i ( k )  x S j ( q ) ,  which constitutes a four-distinct-eigenvalue case. Choosing A 1  = qk, A 2  = 
-qk- ’ ,  A 3  = q-’k- ’  and h4 = -kq- ’ ,  formula (5.8) gives (6.3) within an overall factor 
(1 - k 2 x ) .  We have not examined other orderings of the eigenvalues. The results of the 
Baxterization of direct products is summarized in figures 1 and 2. We now turn to the 
Baxterization of the two-parameter solution s(k, q )  given in (3.4). Using formula (5.6) 

Baxterization 
( 5 . 6 ) :  A ,  = k2, A 2 = - l ,  A,=k” 

( 6 . 3 ) :  d , ( x ;  k )  x d , (x ;  q )  

\ 

I I 

Baxterization 
( 5 . 6 ) :  A , = - 1 , A 2 = k 2 ,  A,=k-*  

Baxterization 
( 5 . 4 ) :  A , = k , A 2 = - k - ’  ( 5 . 6 ) :  A , = k 2 , A 2 = - 1 , A 3 = k - 2  
Baxterization 

t L 

Baxterization 
( 5 . 8 ) :  A , = k q ,  A 2 = - q k - ’  Baxterization 

( 5 . 4 ) :  A , = q ,  A 2 = - q - ’  1 
Figure 1. Commutativity of the Baxterization procedure for the direct products S , ( k )  x 
S, (q ) .  Numbers in the diagram refers to equations in the text. 

D!’ quantum R matrix 
(6 .3 ) :  R , ( x ;  k )  x d , ( x ;  k )  

A f ’  quantum R matrix 

Figure 2. Two distinct ways of Baxterizing Sl (k )  x Sl(k).  Numbers in the diagram refer 
to equations in the text. 
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with A I  = - k - ' ,  A 2  = k and h3 = -kq2 we get 

R ( x ;  k, q )  =block d iag( f l ,  f2, f3, f4, T3, f-2, 

X (  1 - q2)(  k - k - ' x )  0 q( 1 - x)( k - k - ' x )  
f3=( 0 (1 - q2X)( kx - k-I)  0 

q( 1 - x ) (  k - k - ' x )  0 ( 1  - q2)(  k - k - ' x )  

) (6.4) 
X (  1 - q2( k - k - ' x )  
q( 1 - x ) ( k  - xk - ' )  

q(  1 - x ) (  k - xk - ' )  
( 1  - q2) (  k - k x - I )  

T-2 = f-' = ( k  - k - ' x ) (  1 - q2X) 

( k  - k- ' )x (  1 - q2X) 0 

0 

( 1  - x ) (  1 - q 2 x )  
T-, = 0 ( X  - q2) (  k - k - ' x )  0 

( 1  - x ) (  1 - q2x)  

w2 U 2  U3 

( k  - k - ' ) (  1 - q2X) - i  
T4=[!\ :: 
with 

w3 U 6  @6 

o1 = x ( - k - ' x + 2 q 2 x k - ' - q 2 x k - q 2 k - ' +  k )  

0 2 =  k - 'qx (x -  1 ) [ ( 1  -q2)(1 -k2)]"2  

U3 = q ( l  - x ) 2  

u S = ( X  - l ) ( k -  k - 'q2x)  

0 6 =  (1 - x ) [ (  1 - q 2 ) (  1 - k2)]"2  

U S  = ( 1  - x ) [ k (  1 - q 2 )  + k - k - ' ]+  ( 1  - q2) (k  - k - ' ) ~ .  

w4 = ( 1  - q2) (  k - k- ' )x  

~ ( 1 -  q2 ) (k  - k- I )  

We have verified that (6.4) is a solution of (1 .2) .  Note that the other two distinct 
orderings, namely A I  = k, h2 = -k- ' ,  h3 = -kq2 and A I  = k, h2 = -kq2, A ,  = -k-' do not 
give solutions of (1 .2) .  

6.3. Baxterization of the D3 fype solutions 

The Baxterization of D, type solutions is done using (5.6). Using Jimbo's E121 formula 
(3.6), it may be verified that the Baxterization of the standard solution-given in (4.1) 
with the orderings A ,  = k, h2 = -k- ' ,  h3 = k-' and A I  = -k- ' ,  h2 = k, A 3  = k-' give the 
D;') and AY' quantum R matrices respectively; the third possible ordering, namely 
A I  = k, A 2  = k-5,  h3 = -k-' does not lead to a solution of (1 .2) .  We have verified that s given in (4.2) may also be Baxterized into two distinct ways. The quantum R matrix 
corresponding to the ordering A I  = k, h2 = -k-' and A ,  = k-' is 

(6.5) 

(6.6) 

d ( x ;  k) = xS-' - s' 
while that corresponding to the ordering A I  = -k- ' ,  h2 = k and h3 = k-' is 

d ( x ;  k )  = -k-2X(X - l )$- '+  k - ' ( k2 -  k - 2 ) x 1  - ( X  - 1)s. 
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7. Concluding remarks 

Let us first summarize the main results of this paper. By solving the braid group 
relations directly, we have found new solutions of the D2 and D3 types. These solutions 
distinguish themselves from the standard solutions by the fact that, although they obey 
the same weight conservation rule (they have the same zeros), they do not obey the 
classical decomposition rule of tensor products. The second main result consists in 
the construction of the associated quantum R matrices and illustrates the fact that in 
some cases there is more than one way to Baxtenze a given braid group representation. 
We conclude with a few remarks. 

Remark 1. The underlying mathematical structure behind the standard solutions of 
(2.3) is the quantized universal enveloping algebra of simple Lie algebras. The fact 
that the non-standard solutions do not follow the classical decomposition rule hints 
at a different type of quantized enveloping algebra. Recently, the mathematical structure 
behind non-standard solutions of the A,, types has been identified (twisted quantum 
groups) [21]. 

Remark 2. Results show that the constraints (5.2) are useful guidelines to construct 
quantum R matrices but are clearly insufficient to ensure that the resulting matrix will 
be a solution of the QYBE, as the problem of the orderings of the eigenvalues clearly 
indicates. Additional constraints might be a way of solving this problem. In that respect 
the work of Bazhanov might shed some light on this problem. In [ l l ]  he shows that 
a meromorphic function R (  O)(x = ePe) yields a solution of (1.1) provided it satisfies, 
in addition to constraints equivalent to (5.2), the properties of authomorphicity (quasi- 
periodicity) and crossing symmetry. It would be interesting to determine under what 
conditions our prescription leads to such functions. 

Remark 3. We suspect that non-standard solutions of (2.3) exists for B, ,  C,,, D, for 
all n as well as for the exceptional groups. 

Remark 4. Recently the quantum superalgebra U, osp(2,2) has been described by 
Deguchi er a2 [30]. The braid group representation they extract from this algebra is a 
special case of the inverse of our two-parameter solution S(k ,  q )  given in (3.4); indeed, 
a simple symmetry-breaking transformation of the type described in [27] on [ g( k, q = 
k - ' ) ] - '  followed by a change of variable k + k-' will give their result. The implications 
of our two-parameter solution remain to be explored. 
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